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Semiclassical approximation to the partition function of a particle in D dimensions

C. A. A. de Carvalht'
Department of Physics and Astronomy, University of California, Los Angeles, California 90095-1547

R. M. Cavalcanti
Instituto de Fsica, Universidade de”®aPaulo, Caixa Postal 66318, 8d&Paulo, SP 05315-970, Brazil

E. S. Frag¥' and S. E. Joisl**
Instituto de Fsica, Universidade do Estado do Rio de Janeiro, Rua Bancisco Xavier 524, Rio de Janeiro, RJ 20550-013, Brazil
(Received 14 October 1999

We use a path integral formalism to derive a semiclassical series for the partition function of a paflicle in
dimensions. In particular we analyze the case of attractive central potentials, obtaining explicit expressions for
the fluctuation determinant and for the semiclassical two-point function in the special cases of the harmonic
and single-well quartic anharmonic oscillators. The specific heat of the latter is compared to precise WKB
estimates. We conclude by discussing the possible extension of our results to field theories.
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I. INTRODUCTION

As is well known[1-4], the partition function of a par-
ticle of massm interacting with a potentia¥/(x) and a ther-

mal reservoir at temperatuiiecan be written as a path inte-

gral (B=1/kgT):

Z(B)ZJRDdDXOP(B;X01XO)1 (1a)

pBxoxo)= [ Toxme iy
g [1 [dx\?

S[x]=Jo dr >m ar +V(x)|. (10

Semiclassical techniques have proven extremely impor-
tant in a discussion of the transition from quantum to classi-
cal mechanicg5,6]. In the present context, however, we
shall use them in the opposite sense: to systematically incor-
porate fluctuationgthermal and quantujrinto a description
that has one or more solutions of the “Euclidean” equations
of motion as its starting point(Heretofore, we call these
solutions “trajectories” or “classical paths)’The Euclid-
ean character is of crucial importance: first, it restricts the
trajectories to be global minima of the Euclidean action
[7]—any others are exponentially suppressed; in addition, it
leads to classical mechanics problems whose potential-is
nus the physical one. Since we are interested in traces of
operators, only closed trajectories will contribute. All this
dramatically reduces the number of trajectories. In specific
examples of harmonic and single-well quartic anharmonic
oscillators, only one trajectory exists once the initial position

This path integral may be approximated in a number ofand “time of flight” g# are fixed.

ways: depending on the circumstances, one may resort to Thanks to the features described in the previous para-
perturbation theory around exactly soluble harmonic oscillagraph, in a recent papg8] we were able to construct a full

tor calculations, variational estimates, or lattice Monte Carlosemiclassical series for the partition function of a particle in
calculations(such techniques carry over to quantum statisti-one dimension from the mere knowledge of the trajectories.
cal field theory, where free fields play the role of unperturbedWVe obtained fluctuation determinants in a straightforward
uncoupled harmonic oscillatgrsSemiclassical techniques manner, bypassing the solution of the equivalent boundary-
can also be used in approximating this integral. It is theirvalue problems, generated all the terms of the series in a
virtues and shortcomings in applications to statistical mesystematic way, and showed that each term has a nonpertur-

chanics that we intend to discuss.

bative character, corresponding to sums over infinite subsets
of perturbative graphs. Furthermore, we shoy@pthat the
construction actually contairall the perturbative diagrams
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In this paper, we present@-dimensional generalization
of the method. Indeed, we are able to prove, as in the one-
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dimensional case, that it is possible to evaluate each term of u(Bh)=0

the semiclassical series for the partition function using the Z(B)=J DdDXo e_s[xdlﬁf [Du(7)]

classical patts) as the only input. For the sake of simplicity, : u(0)=0

we concentrate on the case of attractive central potentials. In 1 sS[u]\"

such potentials, as will be shown below, the only trajectories X e~ S2lu/n 20 n_|( - ) . (4)
e

that contribute to the partition function are the ones with zero
angular mome”t“’?"'- The discussion of arblt.rary pot_entlalslls The first term of the series corresponds to the quadratic
left for the Appendix. As examples, we consider the isotropic ST . . )

. , . : .“approximation to the partition function, which we denote by
harmonic oscillator and the single-well quartic anharmomcZ (B):
oscillator; in particular, we compute the specific heat of the=2*"~/"
latter in the lowest order semiclassical approximation for a u(Bh)=0
few values of the temperature and Br=1,2, and 3. Zz(,B)Ef Ddeoe*S[Xc]’hf [Du(r)]e SAuA

The paper is organized as follows: Section Il presents the i u©)=0
derivation of the semiclassical series for a generic potential
in an arbitrary number of dimensions, and explicit formulas = | dPxpe” SxelAT12 (5)
for the fluctuation determinant and the semiclassical two- i

point function in the particular case of attractive central po-yhereA is the determinant of the fluctuation operaféir

tentials. Section Il illustrates these results in the cases of

harmonic oscillators and single-well quartic anharmonic os- 2

cillators. Section IV presents our conclusions. In the Appen- A=detF, Fj=—m—38;+ddV(X). (6)
dix, we show how to obtain the fluctuation determinant and dr?

the semiclassical two-point function in the case of an arbi-

trary potential inD dimensions. The other terms of serigd) lead to integrals of the type
u(Bh)=0
Il. SEMICLASSICAL EXPANSION IN STATISTICAL (Uil(Tl) .. .uik(rk)>EJ [Du(7)]
MECHANICS u©)=0
A. General formalism Xe_SZ[u]/hUil( 1) Ui (k).
The procedure to generate a semiclassical seriea(f6y 7

[Eqg. (1) was carried out in detail in Ref8] for the one-

dimensional casel{=1). Here we shall only sketch its gen- Since the actior$,[ u] is quadratic, one can show that

eralization for arbitraryD (for a detailed discussion of the

semiclassical expansion in quantum mechanics using path <Ui1(7'1)' ‘ 'uik(Tk»

integrals, see Refd.11,12). The first step is to find the

minimax.(7) of the Euclidean actio®[ x]. They satisfy the :ﬁk/ZAﬂ/ZE Gij ] (7j,077,)
P 12

G i (m, .7)
Euler-Lagrange equation i k-1t

J
®

_ . if kis even, and zero otherwisEp denotes the sum over all
subject to the boundary conditiong(0) =x.(8%) =Xo; for — hossiple pairings of; , andG;;(7,7') is the solution of
simplicity, we shall assume here that there is only one mini- k
mum. The next step is to functionally expand the Euclidean
action around it. Writingx(7) =x(7)+u(7), with u(0)
=u(Bh)=0, we haveS[ x]= g x|+ S,[u]+ s u], where

mx.— VV(x.)=0, 2)

d2
- mﬁaij +‘9i(9jv(xc) ij(T- 7)=6 o(m—1"), (9

d? satisfying the boundary conditions
- mP 5”- + aiﬁjV(Xc)

uj(7),

(3a)

1 (s
SQ[U]EEJ drui(7)
0 ij(O,T,):ij(Bﬁ,T,):O. (10)

In the Appendix we present a recipe for obtainingand
ph G; (7,7") using the general solution of the equation of mo-
= 1) !
o9u] fo d7éV(r,u) tion (2) as the only input.

h .

Efﬁ dTE %&i B V(XQ) s (1) (7): B. Central potentials

0 n=s N: " ' ! To illustrate the formalism of Sec. Il A, let us apply it to

(3p)  the case of central potentials, i.&/=V(r), wherer=|x|.
First of all, we note that, because of the radial symmetry,

the indiced,j, ... runfrom 1 toD, and repeated indices are p(8;Xg,Xo) can only depend ony=|X,|. Thus, without loss
summed. Inserting this decomposition®ito Eq.(1), and  of generality, we may take,=rqe;, wheree; is the unit
expandinge” °5" in a power series, yields the semiclassicalvector pointing in thex; direction, and perform the angular
expansion oZ(3): integration in Eq(1a) to obtain
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D/2

Z(B)= F(D/2)

Jdroro p(Biroeriroe). (11

In general, there are many classical trajectories satisfying the

boundary conditiong(0)=x(B%) =r, ;. However, they are
all radial if the potential is purely attractije.e., V'(r)>0
for r>0]. Indeed,
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In order to obtainA; and G,(7,7') one simply replaces
Q(r,7") in Eq. (15 by

Qy(7,7)= ¢a(7) (_Pb(T )_‘_Pa(T ) @u(7) |

a7 @p(7") = @a( T ) p(7")

(18)

in this case the Euclidean motion iswheree,(7) and ¢y(7) are two linearly independent solu-

equivalent to that of a particle in a repulsive central potentialtions of

so that a closed classical trajectory necessarily has zero an-
gular momentum. In addition, this trajectory is unique if the

potential is smooth at the origin, i.//(0)=0.

For a trajectory lying in the; axis, X.(7)=r.(7) e, the
fluctuation operatorF is diagonal in the indicesandj. In-
deed, since/=V(r), we have

V(1)
r

(9i(9]'V(r):— V—(r)

r

XiXj
r2

5”"!‘ V"(r)_ (12)
which, for xj=r; &1, gives 919,V (ro)=V"(re), d;;V(re)
=r 'V'(ro) for i=2,...D, and g;9,V(r;)=0 if i#]j.
ThusA=A,AP 71 Where

Ay=def—ma*+V"(ro)], A=def—mad*+r . V'(ry)]

(13

(I andt stand forlongitudinal andtransverse respectively.
The Green'’s functiorG;; also becomes diagonal in this

case:G1=G,, G;=G; for i=2,... D, andG;;=0 if i
#], where
[—m&?+V"(r)]G(7,7)=8(r—1'), (143
[—ma?+r 2V (r)]G(r 7 )=8(7—1'). (14b

A, and G(7,7") are the fluctuation determinant and semi-

[—ma2+r V' (r)] e(1)=0. (19

It immediately follows from the equation of motion that
oa(7)=r.(7) is one such solution. Another one is,(7)
=r(7)fod7'[r(7')]~2. They form a pair of canonical so-
lutions of Eq.(19).

IIl. APPLICATIONS

Using the results of Sec. Il, we may write the quadratic
approximation to the partition function as

D/2

D—1 o= S[xl/% D-1y-1/2
Z,(B)= F(D/Zfdror (AAT )™

(20

This can be readily calculated from a knowledgexgf7)
alone. This will be acomplished below for both the harmonic
and single-well quartic anharmonic oscillators.

A. Harmonic oscillator

As a first example, we consider tti-dimensional(iso-
tropic) harmonic oscillator,

1
—mw?r?. (21)

V=3

classical Green'’s function that appear in the one-dimensional

version of the problem, which was studied in detail in Ref.

[8]. There, the following results were derived:

27h 0,0,7.)Q(7= ,Bh
AT 0,080, G- o TP
(15)
where r_(7-)=min(max)r,7'}, and
Qy(rir')= 7a(7) 7p(7") = Na(7") Mp(7) 16

7a(7") (7)) = 7a(7") (7))
with 7,(7) and n,(7) any two linearly independent solu-
tions of the homogeneus equation

[~ma2+V"(ro)]n(r)=0. (17)
By differentiating the equation of motiomr,—V'(r.)=0
with respect tor, one can verify thabya(r)zfc(r) is one
such solution. The other can be taken [$f] 7,(7)
=r(n)fd7'[re(')] 2. For such a choice, the denomina-
tor of Q,(7,7") is equal to 1 and, since,(0)=0, one has
A= (27hIm) 5,(0) ny,(B%). Because of these simplifying

Since the potential is quadratigV(r,u)=0 and Z(B)
=Z,(B). In addition, r V' (r)=V"(r), so thatA=A,.

Thus
f drord”

The solution of the equation of motion is straightforward,
and yields

D/2

2B =TbR) F(D/Z)

e*S[rc]/fL A|_D/2. (22)

rocosh w(r— Bhi2)]
cosh Bhwl/2)

(23

re(r)=

The classical action can be readily computed, giving

Sr.]=mor3tank Bhwl/2). (24)
As solutions of Eq(17) we may takez,(7) =cosh7) and
7(7) =sinh(7). This givesQ,(7,7")=w sinfw(7 —17)],
so that

Al:Zﬂ'ﬁ S'I‘::,Bﬁw). (25

features, we shall refer to those solutions as the “canonical’inserting Eqs(24) and(25) into Eq.(22), and performing the

solutions of Eq(17).

integral, we obtain
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Z(B)=[2sinh prwl2)]"°,

which is the well-known result for the partition function of
the D-dimensional harmonic oscillator.

(26)

B. Single-well quartic anharmonic oscillator

Let us now consider the potential

V(r)= (A>0). (27)

1 1

- 2,21 Ty 4
me re+ 4)\r

In order to simplify the notation, it is convenient to replace
and 7 by g=(A/mw?) Y% and 6= w1, respectively. In the
new variables, the equation of motion reads

d2q

de? @8

=q+q’,

whose solution, taking into account the boundary conditions,

is
qc(0)=0qnc(ugy, k),

where nc(,k)=1/cn(u,k) is one of the Jacobian elliptic
functions[13-15, and

0 ®) k= 2+qt2 30
2)" 7 N2+g)) (30

where® = B% w. The relation betweeq, andq; is obtained
by taking =0 in Eq. (29):

(29

Uez\/qug

Go=0c(®)=gncug . (3D
(From now on we shall omit thk dependence in the Jaco-
bian elliptic functions).
The classical action
=(m?w3/\)I[q.], where

can be written

asr]

1. 1 1
Ilq)= fo d0[§q2+U<q>}, U(a)= 502+ 70
(32

Using 37—

I[qc]=®U(qt)+2qu°dqv2[u(q)—U(qt)]- (33

U(q.)=—U(qy), we may rewritel[g.] as

Performing the integration and using E&1) yields

—Vi+q?

1,
E(pe k) + 50iUe

1,1,
I[ac]=0| 567+ |+ 3

+Snug

1+ %qf nczu@) \/1+ ;qf(lJr nc2u®)] ,
(34)

where Ef,k) denotes the elliptic integral of the second

kind, and¢,=arcco$q.(6)/qe]=arccos(cruy).
The canonical solutions of Egel7) and(19) are given by
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snuydnu,
7a(6) = 0\ 1+ gf—5—, (353
créu,
6 1 snu,dnu,| k?—1
= u
o w?q(1+gd) crfu, ke '’
1—2k2E . cnu,dnuy,
+ ——E(py, )_Tug
snu,cnu
+(k2-1 )#—(a_@) . (35b
®a(#)=qrncuy, (350
()= — e [E(gy )+ (K= 1)Uy (6-0)]
_ —(6—0)T.
Pb wkzqt\/1+— Py 0
(350
Thus
A 4’7Tﬁ SrFUG)dan@) l_k2 +2k2_l y k)
= Ug E(gg,
" me T+glerfue| K2 K2 o
Chug dnug , SNUg CNUg
Snug k%) dnug |’ (369
4mh  ncug
(36b

A= e W[EW@ )+ (k2= 1)ug].

We now have all the necessary ingredients to compute the
quadratic approximation td(g),

27TD/2 (

I'(D2)

M2\ D2
)\) f To

1e7|[qc]/g(AlAP*l)71/2’

Zy(B)=

D7
X g

(37

whereg=#\/m?w>. However, to perform the integral over
Jo one must writd[g.], A,, andA, in terms ofqg. In view

of Eq. (31), it is much simpler to change the variable of
integration fromgg to g,

27P2 [ mw? D’quo aq
r(o2) | x o 9% Zg.

Xe_l[qC]/g(A|AP_l)_1/2,

(Qt ncue)®

Zy(B)=

(38

whereqg = Iimqo_,xqt(qo,(@). The Jacobiandqy/dq;) ¢ can

be obtained directly from Eq31) by differentiation or, more
simply, by using the identity8]

Mo U'(g)a

4mh \[2[U(dp)—U(a0]
As an application, we may use E(8) to calculate the

specific heat of th@®-dimensional single-well quartic anhar-
monic oscillator, given by

(39

(%
ﬁqt e
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FIG. 1. Specific heat(in units of kg) vs temperature T
=1/Bhw) for one- (diamond$, two- (circles, and three-
dimensional(crosse} single-well quartic anharmonic oscillators in
the semiclassical approximatiog=#\/m?w®=0.5.

C:,82(9—2In Z. (40)
982

Using the programmAPLE, we computed this expression for
a few values of the temperatuf27]. In Fig. 1, we present
the results forD=1, 2, and 3. In Fig. 2, we compare the
semiclassical approximation witt) the classical result, in
which the partition function is given by

D/2

m
f dPxe AVM; (41)

2mwh?B

Zy(B)= (

(i) with the lowest order WKB approximation, in which the
energy levels entering the expressioa = ,e~ #En are given
by the Bohr-Sommerfeld formula

T

FIG. 2. Specific heat(in units of kg) vs temperature T
=1/phw) for the one-dimensional harmonic oscillat¢long-
dashed ling and for the single-well quartic anharmonic oscillator:
classical result(short-dashed line semiclassical approximation
(circles, and WKB approximatiorisolid line). g=AN/m?w®=0.2.

h (n=0,12...);
(42

L
T3

é V2M[E,—V(X)]dx=

and (i) with the specific heat of the harmonic oscillator.

IV. CONCLUSIONS

The results of the previous sections confirm the findings
of Refs.[8,9], and generalize them to arbitraBy The semi-
classical approach finds the minima of the Euclidean action
and expands around them. As a result, it generates a series
whose terms correspond to resummations of infinite numbers
of perturbative graphs plus additional ones. Our calculations
show that even the lowest order semiclassical estimates im-
prove on perturbation theory at low temperatures and, in
contrast to it, correctly describe the high temperature regime.

The comparison with WKB estimates, done for the one-
dimensional case, is particularly interesting. Such estimates
approximate the values of the energy levels of the single-
well anharmonic oscillator to a high precision if
=ANm?w? is small, even if we restrict ourselves to the
lowest order WKB quantization condition, given by the
Bohr-Sommerfeld formuld18]. They were then used to
compute the partition function by actually performing the
sums over eigenstates numerically. Thus the WKB results
can be considered “quasiexact.” In contrast, the semiclassi-
cal approach directly approximates tiveolesum. Its lowest
order agrees well with the quasiexact WKB result at both
high and low temperatures. At high, this agreement just
reflects the convergence of both results to the classical limit,
something which is completely missed by perturbation
theory. Only in the intermediate region does our result differ
from the WKB result, although we expect this to be modified
with the inclusion of next-to-leading orders. It is less accu-
rate, as it approximates the whole sum, whereas the WKB
result approximates each term in the sum; however, it does
incorporate and improve upon the virtues of perturbation
theory at low temperatures, and of the classical limit at high
ones. Results fob=2 andD=3 do follow the same pat-
tern, although we have not compared them to WKB esti-
mates.

The advantage of this method is that it reduces the whole
quantum problem to the computation @i few) classical
paths. From then on, a systematic procedure takes care of
generating each term in the series. Paradoxically, this may
also be its weakness: there are systems for which the action
does not have a global minimum, but which are perfectly
well defined quantum mechanically. The Coulomb potential
is a good example; there, depending on the value8 ahd
ro, the number of classical paths may be two, one, or zero. In
addition, only in the two-solution regime do we have
minima. Even then, they are local, not global ones. There-
fore, our starting point seems ill defined. This should not
come as a surprise, however, since here the classical limit
itself is ill defined, as the potential is unbounded below. As a
matter of fact, even the usual time-slicing prescription to
calculate the path integral must be modified in the case of the
Coulomb potentia[3]. Cases like this will require special
consideration, although there exist suggestions in the litera-
ture as to how to treat similar situations of absence of clas-
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sical paths in quantum mechand®]. Nevertheless, we ex- J

pect the techniques presented here to be useful in any Bjk(7)= —p-Xj(m:8=X0,b=Vy), (A4)
problem which can be reduced to the calculation of partition k

or correlation functions in equilibrium statistical meChan'CS’wherev():)'(C(O). By differentiating Eq.(2) with respect to

as long as it allows for a simple analysis of the minima of the 2 a
Euclidean action. a, andby (and takinga=X,, b=V;), one can show that they

Our next step is to investigate how the semiclassical treat © solutions of EqAL). They are also invertible for smgll
ment affects field-theoretic problems at finite temperature?nough[zo_] (but not zero. Indeed, x(7) =a+br+O(7 )
where standard methods of computation of effective poten\—Nhen 7—0; henceA(r) =1+0(7%) andB(7) =71+ 0(7).
tials rely on expansions around constant backgrounds. A‘[herefore, the expression
finite temperature, these are not in general minima of the 1
Euclidean action. This might lead to problems with the ex-  j(7 7')=—- —[A(")A %7 )—B(7)B~ (7]
pansions around such backgrounds at high temperatures, of m
the same nature of those encountered by perturbation theory
in quantum statistical mechanics. Even if we neglect any
coordinate dependence of the fields, their dependence on EHfakes sense, and one can easily verify that it satisfies Eqs
clidean time is essential to satisfy equations of motion an Al) and(AZ)' '
boundary conditions that characterize classical paths. We ex- The Green.’s functiot(, ') can be written in terms of
pect this to have an effect on a variety of calculations. . '
X . . the Jacobi commutator as

Another problem of interest is to generalize our results to
field theories with spherically symmetric classical solutions. "— , '
An extension of the approach presented in this work to treat Gln)=I7.0M(0.52)I( A, 7)6(7" ~ 1)
models containing nontrivial backgroundkke instantons, =J(7,BA)M(BR,0I(0,7)0(7—7"), (AB)
monopoles, vortices, ejcas classical solutions might lead to
some new insights. Unfortunately, the extension of our rewhere M(r,7')=—J(7',7) "%, and 6(7) is the Heaviside
sults to field theories is not a straightforward process. In factstep function. To prove E¢A6) we need the following iden-
we do not know how to construct a semiclassical propagatatities:
in general. The success of our program will depend on how

well can we circumvent this difficulty. J(7,00M(0,8%)I( B, 7") +I(7,ph)M(BA,00J(0,7")
=—J(r,7), (A7)

X[A(7)A Y1) —B(7)B X(7)]" ! (A5)
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Now, the proof of Eq(A6): (i) it is a solution of Eq.(9)
Let J(7,7") be the solution of the homogeneous differen-when7<7' or 7> 7'; (ii) it satisfies the boundary conditions
tial equation (20); (iii) it is continuous atr= 7',

d? G(7+0,7)=G(7'—0,7") (A9)
—mpﬁij‘FﬁiﬁjV(Xc) ij(T,T’):O, (A1)
T [use Eq(A7) with 7= 7], and(iv) its derivative with respect

satisfying the initial conditions to 7 has the discontinuity implied by E@9),

J 1 J 0y 2 e —
J(+,7)=0, (9_7‘](727_/'7_/):_51_ (A2) EG(T=7‘ +0,T)—E_G(T=T—O,T)=—Eﬂ

(A10)

This function is known as the Jacobi commutdtbt,12. It
can be explicitly constructed as follows. bdtr;a,b) be the
solution of the equation of motio(?) satisfying the initial

[use Eq.(A8)].
Finally, the determinamk of the fluctuation operataf is

conditionsx(0)=a, x(0)=b. Let A and B be theDxD given by
matrices defined as A:(ZWﬁ)D de[_J(Bﬁ,O)] (All)
Aj(7) J x;(7:a=Xo,b=Vp), (A3) This formula can be proven along the lines of Appendix 1 of

" gy Ref. [21].
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