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Semiclassical approximation to the partition function of a particle in D dimensions
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We use a path integral formalism to derive a semiclassical series for the partition function of a particle inD
dimensions. In particular we analyze the case of attractive central potentials, obtaining explicit expressions for
the fluctuation determinant and for the semiclassical two-point function in the special cases of the harmonic
and single-well quartic anharmonic oscillators. The specific heat of the latter is compared to precise WKB
estimates. We conclude by discussing the possible extension of our results to field theories.
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I. INTRODUCTION

As is well known@1–4#, the partition function of a par-
ticle of massm interacting with a potentialV(x) and a ther-
mal reservoir at temperatureT can be written as a path inte
gral (b51/kBT):

Z~b!5E
RD

dDx0r~b;x0 ,x0!, ~1a!

r~b;x0 ,x0!5E
x(0)5x0

x(b\)5x0
@Dx~t!#e2S[x]/\, ~1b!

S@x#5E
0

b\

dtF1

2
mS dx

dt D 2

1V~x!G . ~1c!

This path integral may be approximated in a number
ways: depending on the circumstances, one may reso
perturbation theory around exactly soluble harmonic osci
tor calculations, variational estimates, or lattice Monte Ca
calculations~such techniques carry over to quantum stati
cal field theory, where free fields play the role of unperturb
uncoupled harmonic oscillators!. Semiclassical technique
can also be used in approximating this integral. It is th
virtues and shortcomings in applications to statistical m
chanics that we intend to discuss.
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Semiclassical techniques have proven extremely imp
tant in a discussion of the transition from quantum to clas
cal mechanics@5,6#. In the present context, however, w
shall use them in the opposite sense: to systematically in
porate fluctuations~thermal and quantum! into a description
that has one or more solutions of the ‘‘Euclidean’’ equatio
of motion as its starting point.~Heretofore, we call these
solutions ‘‘trajectories’’ or ‘‘classical paths.’’! The Euclid-
ean character is of crucial importance: first, it restricts
trajectories to be global minima of the Euclidean acti
@7#—any others are exponentially suppressed; in addition
leads to classical mechanics problems whose potential ismi-
nus the physical one. Since we are interested in traces
operators, only closed trajectories will contribute. All th
dramatically reduces the number of trajectories. In spec
examples of harmonic and single-well quartic anharmo
oscillators, only one trajectory exists once the initial positi
and ‘‘time of flight’’ b\ are fixed.

Thanks to the features described in the previous pa
graph, in a recent paper@8# we were able to construct a fu
semiclassical series for the partition function of a particle
one dimension from the mere knowledge of the trajector
We obtained fluctuation determinants in a straightforwa
manner, bypassing the solution of the equivalent bounda
value problems, generated all the terms of the series
systematic way, and showed that each term has a nonpe
bative character, corresponding to sums over infinite sub
of perturbative graphs. Furthermore, we showed@9# that the
construction actually containsall the perturbative diagram
and many more. As an application of the method, we eva
ated the ground-state energy and the specific heat of
single-well quartic anharmonic oscillator, for the form
achieving good agreement with precise numerical res
@10#, and for the latter a result which has the correct hi
temperature limit, in contrast with the one obtained via co
ventional perturbation theory around the minima of the p
tential.

In this paper, we present aD-dimensional generalization
of the method. Indeed, we are able to prove, as in the o
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dimensional case, that it is possible to evaluate each term
the semiclassical series for the partition function using
classical path~s! as the only input. For the sake of simplicit
we concentrate on the case of attractive central potential
such potentials, as will be shown below, the only trajector
that contribute to the partition function are the ones with z
angular momentum. The discussion of arbitrary potential
left for the Appendix. As examples, we consider the isotro
harmonic oscillator and the single-well quartic anharmo
oscillator; in particular, we compute the specific heat of
latter in the lowest order semiclassical approximation fo
few values of the temperature and forD51,2, and 3.

The paper is organized as follows: Section II presents
derivation of the semiclassical series for a generic poten
in an arbitrary number of dimensions, and explicit formu
for the fluctuation determinant and the semiclassical tw
point function in the particular case of attractive central p
tentials. Section III illustrates these results in the cases
harmonic oscillators and single-well quartic anharmonic
cillators. Section IV presents our conclusions. In the App
dix, we show how to obtain the fluctuation determinant a
the semiclassical two-point function in the case of an a
trary potential inD dimensions.

II. SEMICLASSICAL EXPANSION IN STATISTICAL
MECHANICS

A. General formalism

The procedure to generate a semiclassical series forZ(b)
@Eq. ~1! was carried out in detail in Ref.@8# for the one-
dimensional case (D51). Here we shall only sketch its gen
eralization for arbitraryD ~for a detailed discussion of th
semiclassical expansion in quantum mechanics using
integrals, see Refs.@11,12#!. The first step is to find the
minimaxc(t) of the Euclidean actionS@x#. They satisfy the
Euler-Lagrange equation

mẍc2¹V~xc!50, ~2!

subject to the boundary conditionsxc(0)5xc(b\)5x0; for
simplicity, we shall assume here that there is only one m
mum. The next step is to functionally expand the Euclide
action around it. Writingx(t)5xc(t)1u(t), with u(0)
5u(b\)50, we haveS@x#5S@xc#1S2@u#1dS@u#, where

S2@u#[
1

2E0

b\

dt ui~t!F2m
d2

dt2
d i j 1] i] jV~xc!Guj~t!,

~3a!

dS@u#[E
0

b\

dtdV~t,u!

[E
0

b\

dt (
n53

`
1

n!
] i 1

•••] i n
V~xc! ui 1

~t!•••ui n
~t!;

~3b!

the indicesi , j , . . . run from 1 toD, and repeated indices ar
summed. Inserting this decomposition ofS into Eq. ~1!, and
expandinge2dS/\ in a power series, yields the semiclassic
expansion ofZ(b):
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Z~b!5E
RD

dDx0 e2S[xc]/\E
u(0)50

u(b\)50

@Du~t!#

3e2S2[u]/\ (
n50

`
1

n! S 2
dS@u#

\ D n

. ~4!

The first term of the series corresponds to the quadr
approximation to the partition function, which we denote
Z2(b):

Z2~b![E
RD

dDx0e2S[xc]/\E
u(0)50

u(b\)50

@Du~t!#e2S2[u]/\

5E
RD

dDx0e2S[xc]/\D21/2, ~5!

whereD is the determinant of the fluctuation operatorF:

D5detF, Fi j 52m
d2

dt2
d i j 1] i] jV~xc!. ~6!

The other terms of series~4! lead to integrals of the type

^ui 1
~t1! . . . ui k

~tk!&[E
u(0)50

u(b\)50

@Du~t!#

3e2S2[u]/\ui 1
~t1!•••ui k

~tk!.

~7!

Since the actionS2@u# is quadratic, one can show that

^ui 1
~t1!•••ui k

~tk!&

5\k/2 D21/2(
P

Gi j 1
i j 2

~t j 1
,t j 2

!•••Gi j k21
i j k

~t j k21
,t j k

!

~8!

if k is even, and zero otherwise.(P denotes the sum over a
possible pairings oft j k

, andGi j (t,t8) is the solution of

F2m
d2

dt2
d i j 1] i] jV~xc!GGjk~t,t8!5d ik d~t2t8!, ~9!

satisfying the boundary conditions

Gjk~0,t8!5Gjk~b\,t8!50. ~10!

In the Appendix we present a recipe for obtainingD and
Gi j (t,t8) using the general solution of the equation of m
tion ~2! as the only input.

B. Central potentials

To illustrate the formalism of Sec. II A, let us apply it t
the case of central potentials, i.e.,V5V(r ), where r[uxu.
First of all, we note that, because of the radial symme
r(b;x0 ,x0) can only depend onr 05ux0u. Thus, without loss
of generality, we may takex05r 0 e1, wheree1 is the unit
vector pointing in thex1 direction, and perform the angula
integration in Eq.~1a! to obtain
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Z~b!5
2pD/2

G~D/2!
E

0

`

dr0 r 0
D21 r~b;r 0 e1 ;r 0 e1!. ~11!

In general, there are many classical trajectories satisfying
boundary conditionsx(0)5x(b\)5r 0 e1. However, they are
all radial if the potential is purely attractive@i.e., V8(r ).0
for r .0#. Indeed, in this case the Euclidean motion
equivalent to that of a particle in a repulsive central potent
so that a closed classical trajectory necessarily has zero
gular momentum. In addition, this trajectory is unique if t
potential is smooth at the origin, i.e.,V8(0)50.

For a trajectory lying in thex1 axis, xc(t)5r c(t) e1, the
fluctuation operatorF is diagonal in the indicesi and j. In-
deed, sinceV5V(r ), we have

] i] jV~r !5
V8~r !

r
d i j 1FV9~r !2

V8~r !

r Gxixj

r 2
, ~12!

which, for xi5r c d i1, gives ]1]1V(r c)5V9(r c), ] i] iV(r c)
5r c

21 V8(r c) for i 52, . . . ,D, and ] i] jV(r c)50 if iÞ j .
ThusD5D lD t

D21 , where

D l5det@2m ]t
21V9~r c!#, D t5det@2m ]t

21r c
21 V8~r c!#

~13!

( l and t stand forlongitudinal and transverse, respectively!.
The Green’s functionGi j also becomes diagonal in th

case:G115Gl , Gii 5Gt for i 52, . . . ,D, and Gi j 50 if i
Þ j , where

@2m ]t
21V9~r c!# Gl~t,t8!5d~t2t8!, ~14a!

@2m ]t
21r c

21 V8~r c!# Gt~t,t8!5d~t2t8!. ~14b!

D l and Gl(t,t8) are the fluctuation determinant and sem
classical Green’s function that appear in the one-dimensio
version of the problem, which was studied in detail in R
@8#. There, the following results were derived:

D l5
2p\

m
V l~0,b\!, Gl~t,t8!5

V l~0,t,!V l~t. ,b\!

mV l~0,b\!
,

~15!

wheret,(t.)[min(max)$t,t8%, and

V l~t,t8![
ha~t! hb~t8!2ha~t8! hb~t!

ha~t8! ḣb~t8!2ḣa~t8! hb~t8!
, ~16!

with ha(t) and hb(t) any two linearly independent solu
tions of the homogeneus equation

@2m ]t
21V9~r c!#h~t!50. ~17!

By differentiating the equation of motionmr̈c2V8(r c)50
with respect tot, one can verify thatha(t)5 ṙ c(t) is one
such solution. The other can be taken as@16# hb(t)
5 ṙ c(t)*0

tdt8@ ṙ c(t8)#22. For such a choice, the denomin
tor of V l(t,t8) is equal to 1 and, sincehb(0)50, one has
D l5(2p\/m) ha(0) hb(b\). Because of these simplifying
features, we shall refer to those solutions as the ‘‘canonic
solutions of Eq.~17!.
he

l,
n-

al
.

l’’

In order to obtainD t and Gt(t,t8) one simply replaces
V l(t,t8) in Eq. ~15! by

V t~t,t8![
wa~t! wb~t8!2wa~t8! wb~t!

wa~t8!ẇb~t8!2ẇa~t8!wb~t8!
, ~18!

wherewa(t) and wb(t) are two linearly independent solu
tions of

@2m ]t
21r c

21 V8~r c!# w~t!50. ~19!

It immediately follows from the equation of motion tha
wa(t)5r c(t) is one such solution. Another one iswb(t)
5r c(t)*0

tdt8@r c(t8)#22. They form a pair of canonical so
lutions of Eq.~19!.

III. APPLICATIONS

Using the results of Sec. II, we may write the quadra
approximation to the partition function as

Z2~b!5
2pD/2

G~D/2!
E

0

`

dr0r 0
D21 e2S[xc]/\~D lD t

D21!21/2.

~20!

This can be readily calculated from a knowledge ofxc(t)
alone. This will be acomplished below for both the harmon
and single-well quartic anharmonic oscillators.

A. Harmonic oscillator

As a first example, we consider theD-dimensional~iso-
tropic! harmonic oscillator,

V~r !5
1

2
mv2r 2. ~21!

Since the potential is quadratic,dV(t,u)50 and Z(b)
5Z2(b). In addition, r 21 V8(r )5V9(r ), so that D t5D l .
Thus

Z~b!5
2pD/2

G~D/2!
E

0

`

dr0 r 0
D21 e2S[ r c]/\ D l

2D/2. ~22!

The solution of the equation of motion is straightforwar
and yields

r c~t!5
r 0 cosh@v~t2b\/2!#

cosh~b\v/2!
. ~23!

The classical action can be readily computed, giving

S@r c#5mvr 0
2 tanh~b\v/2!. ~24!

As solutions of Eq.~17! we may takeha(t)5cosh(vt) and
hb(t)5sinh(vt). This givesV l(t,t8)5v21sinh@v(t82t)#,
so that

D l5
2p\ sinh~b\v!

mv
. ~25!

Inserting Eqs.~24! and~25! into Eq.~22!, and performing the
integral, we obtain



f

n

-

d

the

r

of

r-

PRE 61 6395SEMICLASSICAL APPROXIMATION TO THE . . .
Z~b!5@2 sinh~b\v/2!#2D, ~26!

which is the well-known result for the partition function o
the D-dimensional harmonic oscillator.

B. Single-well quartic anharmonic oscillator

Let us now consider the potential

V~r !5
1

2
mv2r 21

1

4
lr 4 ~l.0!. ~27!

In order to simplify the notation, it is convenient to replacer
and t by q[(l/mv2)1/2r and u[vt, respectively. In the
new variables, the equation of motion reads

d2q

du2
5q1q3, ~28!

whose solution, taking into account the boundary conditio
is

qc~u!5qtnc~uu ,k!, ~29!

where nc(u,k)[1/cn(u,k) is one of the Jacobian elliptic
functions@13–15#, and

uu5A11qt
2S u2

Q

2 D , k5A 21qt
2

2~11qt
2!

, ~30!

whereQ[b\v. The relation betweenq0 andqt is obtained
by takingu5Q in Eq. ~29!:

q05qc~Q!5qtncuQ . ~31!

~From now on we shall omit thek dependence in the Jaco
bian elliptic functions.!

The classical action can be written asS@r c#
5(m2v3/l)I @qc#, where

I @q#5E
0

Q

duF1

2
q̇21U~q!G , U~q!5

1

2
q21

1

4
q4.

~32!

Using 1
2 q̇c

22U(qc)52U(qt), we may rewriteI @qc# as

I @qc#5QU~qt!12E
qt

q0
dqA2@U~q!2U~qt!#. ~33!

Performing the integration and using Eq.~31! yields

I @qc#5QS 1

2
qt

21
1

4
qt

4D1
4

3 H 2A11qt
2FE~wQ ,k!1

1

2
qt

2uQG
1snuQS 11

1

2
qt

2 nc2uQDA11
1

2
qt

2~11nc2uQ!J ,

~34!

where E(w,k) denotes the elliptic integral of the secon
kind, andwu[arccos@qc(u)/q0#5arccos(cnuu).

The canonical solutions of Eqs.~17! and~19! are given by
s,

ha~u!5vqtA11qt
2snuu dnuu

cn2uu

, ~35a!

hb~u!5
1

v2qt~11qt
2!

snuu dnuu

cn2uu
Fk221

k2
uu

1
122k2

k2
E~wu ,k!2

cnuu dnuu

snuu

1~k221!
snuu cnuu

dnuu
2~u→0!G , ~35b!

wa~u!5qt ncuu , ~35c!

wb~u!5
ncuu

vk2qtA11qt
2 @E~wu ,k!1~k221!uu2~u→0!#.

~35d!

Thus

D l5
4p\

mv

sn2uQ dn2uQ

A11qt
2 cn4uQ

F12k2

k2
uQ1

2k221

k2
E~wQ ,k!

1
cnuQ dnuQ

snuQ
1~12k2!

snuQ cnuQ

dnuQ
G , ~36a!

D t5
4p\

mv

nc2uQ

k2A11qt
2 @E~wQ ,k!1~k221!uQ#. ~36b!

We now have all the necessary ingredients to compute
quadratic approximation toZ(b),

Z2~b!5
2pD/2

G~D/2! S mv2

l D D/2E
0

`

dq0

3q0
D21e2I [qc]/g~D lD t

D21!21/2, ~37!

whereg[\l/m2v3. However, to perform the integral ove
q0 one must writeI @qc#, D l , andD t in terms ofq0. In view
of Eq. ~31!, it is much simpler to change the variable
integration fromq0 to qt ,

Z2~b!5
2pD/2

G~D/2! S mv2

l D D/2E
0

qQ
dqtS ]q0

]qt
D

Q

~qt ncuQ!D21

3e2I [qc]/g~D lD t
D21!21/2, ~38!

whereqQ5 limq0→`qt(q0 ,Q). The Jacobian (]q0 /]qt)Q can
be obtained directly from Eq.~31! by differentiation or, more
simply, by using the identity@8#

S ]q0

]qt
D

Q

5
mv

4p\

U8~qt!D l

A2@U~q0!2U~qt!#
. ~39!

As an application, we may use Eq.~38! to calculate the
specific heat of theD-dimensional single-well quartic anha
monic oscillator, given by
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C5b2
]2

]b2
ln Z. ~40!

Using the programMAPLE, we computed this expression fo
a few values of the temperature@17#. In Fig. 1, we present
the results forD51, 2, and 3. In Fig. 2, we compare th
semiclassical approximation with~i! the classical result, in
which the partition function is given by

Zcl~b!5S m

2p\2b
D D/2E dDxe2bV(x); ~41!

~ii ! with the lowest order WKB approximation, in which th
energy levels entering the expressionZ5(ne2bEn are given
by the Bohr-Sommerfeld formula

FIG. 1. Specific heat~in units of kB) vs temperature (T
[1/b\v) for one- ~diamonds!, two- ~circles!, and three-
dimensional~crosses! single-well quartic anharmonic oscillators i
the semiclassical approximation.g[\l/m2v350.5.

FIG. 2. Specific heat~in units of kB) vs temperature (T
[1/b\v) for the one-dimensional harmonic oscillator~long-
dashed line! and for the single-well quartic anharmonic oscillato
classical result~short-dashed line!, semiclassical approximation
~circles!, and WKB approximation~solid line!. g[\l/m2v350.2.
R A2m@En2V~x!#dx5S n1
1

2Dh ~n50,1,2, . . . !;

~42!

and ~iii ! with the specific heat of the harmonic oscillator.

IV. CONCLUSIONS

The results of the previous sections confirm the findin
of Refs.@8,9#, and generalize them to arbitraryD. The semi-
classical approach finds the minima of the Euclidean ac
and expands around them. As a result, it generates a s
whose terms correspond to resummations of infinite numb
of perturbative graphs plus additional ones. Our calculati
show that even the lowest order semiclassical estimates
prove on perturbation theory at low temperatures and,
contrast to it, correctly describe the high temperature regi

The comparison with WKB estimates, done for the on
dimensional case, is particularly interesting. Such estima
approximate the values of the energy levels of the sing
well anharmonic oscillator to a high precision ifg
[\l/m2v3 is small, even if we restrict ourselves to th
lowest order WKB quantization condition, given by th
Bohr-Sommerfeld formula@18#. They were then used to
compute the partition function by actually performing th
sums over eigenstates numerically. Thus the WKB res
can be considered ‘‘quasiexact.’’ In contrast, the semicla
cal approach directly approximates thewholesum. Its lowest
order agrees well with the quasiexact WKB result at bo
high and low temperatures. At highT, this agreement jus
reflects the convergence of both results to the classical li
something which is completely missed by perturbati
theory. Only in the intermediate region does our result dif
from the WKB result, although we expect this to be modifi
with the inclusion of next-to-leading orders. It is less acc
rate, as it approximates the whole sum, whereas the W
result approximates each term in the sum; however, it d
incorporate and improve upon the virtues of perturbat
theory at low temperatures, and of the classical limit at h
ones. Results forD52 andD53 do follow the same pat-
tern, although we have not compared them to WKB e
mates.

The advantage of this method is that it reduces the wh
quantum problem to the computation of~a few! classical
paths. From then on, a systematic procedure takes car
generating each term in the series. Paradoxically, this m
also be its weakness: there are systems for which the ac
does not have a global minimum, but which are perfec
well defined quantum mechanically. The Coulomb poten
is a good example; there, depending on the values ofb and
r 0, the number of classical paths may be two, one, or zero
addition, only in the two-solution regime do we hav
minima. Even then, they are local, not global ones. The
fore, our starting point seems ill defined. This should n
come as a surprise, however, since here the classical
itself is ill defined, as the potential is unbounded below. A
matter of fact, even the usual time-slicing prescription
calculate the path integral must be modified in the case of
Coulomb potential@3#. Cases like this will require specia
consideration, although there exist suggestions in the lite
ture as to how to treat similar situations of absence of c
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sical paths in quantum mechanics@19#. Nevertheless, we ex
pect the techniques presented here to be useful in
problem which can be reduced to the calculation of partit
or correlation functions in equilibrium statistical mechanic
as long as it allows for a simple analysis of the minima of
Euclidean action.

Our next step is to investigate how the semiclassical tr
ment affects field-theoretic problems at finite temperatu
where standard methods of computation of effective pot
tials rely on expansions around constant backgrounds
finite temperature, these are not in general minima of
Euclidean action. This might lead to problems with the e
pansions around such backgrounds at high temperature
the same nature of those encountered by perturbation th
in quantum statistical mechanics. Even if we neglect a
coordinate dependence of the fields, their dependence on
clidean time is essential to satisfy equations of motion a
boundary conditions that characterize classical paths. We
pect this to have an effect on a variety of calculations.

Another problem of interest is to generalize our results
field theories with spherically symmetric classical solutio
An extension of the approach presented in this work to tr
models containing nontrivial backgrounds~like instantons,
monopoles, vortices, etc.! as classical solutions might lead
some new insights. Unfortunately, the extension of our
sults to field theories is not a straightforward process. In f
we do not know how to construct a semiclassical propag
in general. The success of our program will depend on h
well can we circumvent this difficulty.
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APPENDIX

Let J(t,t8) be the solution of the homogeneous differe
tial equation

F2m
d2

dt2
d i j 1] i] jV~xc!GJjk~t,t8!50, ~A1!

satisfying the initial conditions

J~t8,t8!50,
]

]t
J~t5t8,t8!52

1

m
1. ~A2!

This function is known as the Jacobi commutator@11,12#. It
can be explicitly constructed as follows. Letx(t;a,b) be the
solution of the equation of motion~2! satisfying the initial
conditions x(0)5a, ẋ(0)5b. Let A and B be the D3D
matrices defined as

Ajk~t!5
]

]ak
xj~t;a5x0 ,b5v0!, ~A3!
ny
n
,
e

t-
,
-

At
e
-
of
ry
y
u-
d
x-

o
.
at

-
t,
or
w

J,

s
r

-

Bjk~t!5
]

]bk
xj~t;a5x0 ,b5v0!, ~A4!

wherev05 ẋc(0). By differentiating Eq.~2! with respect to
ak andbk ~and takinga5x0 , b5v0), one can show that they
are solutions of Eq.~A1!. They are also invertible fort small
enough @20# ~but not zero!. Indeed,x(t)5a1bt1O(t2)
whent→0; henceA(t)511O(t2) andB(t)5t11O(t2).
Therefore, the expression

J~t,t8!52
1

m
@A~t!A21~t8!2B~t!B21~t8!#

3@Ȧ~t8!A21~t8!2Ḃ~t8!B21~t8!#21 ~A5!

makes sense, and one can easily verify that it satisfies
~A1! and ~A2!.

The Green’s functionG(t,t8) can be written in terms of
the Jacobi commutator as

G~t,t8!5J~t,0!M ~0,b\!J~b\,t8!u~t82t!

2J~t,b\!M ~b\,0!J~0,t8!u~t2t8!, ~A6!

where M (t,t8)52J(t8,t)21, and u(t) is the Heaviside
step function. To prove Eq.~A6! we need the following iden-
tities:

J~t,0!M ~0,b\!J~b\,t8!1J~t,b\!M ~b\,0!J~0,t8!

52J~t,t8!, ~A7!

]tJ~t,0!M ~0,b\!J~b\,t!1]tJ~t,b\!M ~b\,0!J~0,t!

5
1

m
1. ~A8!

The first identity follows from the fact that both functions a
solutions of the same second order differential equation@Eq.
~A1!# and are equal att50 andt5b\; the second follows
from Eqs.~A2! and ~A7!.

Now, the proof of Eq.~A6!: ~i! it is a solution of Eq.~9!
whent,t8 or t.t8; ~ii ! it satisfies the boundary condition
~10!; ~iii ! it is continuous att5t8,

G~t810,t8!5G~t820,t8! ~A9!

@use Eq.~A7! with t5t8#, and~iv! its derivative with respect
to t has the discontinuity implied by Eq.~9!,

]

]t
G~t5t810,t8!2

]

]t
G~t5t820,t8!52

1

m
1

~A10!

@use Eq.~A8!#.
Finally, the determinantD of the fluctuation operatorF is

given by

D5~2p\!D det@2J~b\,0!#. ~A11!

This formula can be proven along the lines of Appendix 1
Ref. @21#.
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